Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract Blow flies (Diptera: Calliphoridae) occur worldwide and exhibit a wide range of larval feeding habits, including saprophagy, coprophagy, parasitism and predation. Understanding their biology is critical for medical and veterinary science and ecology. Calliphorids thrive across a range of habitats and exhibit complex life histories, with larvae developing immersed in their food substrate, while adults are free‐living and have diverse feeding strategies. Some species have evolved specialized parasitic associations with vertebrate or invertebrate hosts, which are behaviors with important implications for agriculture and for understanding evolutionary transitions between saprophagy and parasitism. This study presents a comprehensive phylogenetic analysis of the Calliphoridae, utilizing 711 of 736 analysed nuclear genes, using anchored hybrid enrichment, from a global collection of blow flies and their relatives. Our results provide a robust and novel reconstruction of the evolutionary history of this group, pinpointing major transitions in larval feeding habits. We argue that saprophagy evolved independently multiple times from invertebrate parasitic ancestors, with vertebrate parasitism emerging from a number of different feeding strategies. These findings challenge prior hypotheses and offer new insights into the adaptive traits driving trophic specialization and diversification in this group.more » « lessFree, publicly-accessible full text available December 12, 2026
-
Abstract The Miltogramminae (Diptera: Sarcophagidae) includes ~600 species across >40 genera, which constitute ~20% of global Sarcophagidae. While molecular phylogenetic hypotheses have been produced for this group, critical problems persist, including the presence of paraphyletic genera, uncertain relationships between genera, a bias of sampling towards Palaearctic taxa, and low support for many branches. The present study remedies these issues through the application of Anchored Hybrid Enrichment (AHE) to a sample including ~60% of the currently recognised genera (16% of known species) representing all biogeographic regions except the Neotropical. An alignment of 1,281 concatenated loci was analysed with maximum likelihood (RAxML, IQ‐TREE), Bayesian inference (ExaBayes) and coalescent‐based approaches (ASTRAL, SVDquartets), which resulted in highly supported and concordant topologies, providing unprecedented insight into the relationships of this subfamily of flesh flies, allowing a major update to miltogrammine classification. The AHE phylogenetic hypothesis supports the monophyly of a large proportion of genera. The monophyly ofMetopiaMeigen is restored by synonymy withAenigmetopiaMalloch,syn.n.To achieve monophyly ofMiltogrammaMeigen, eight species are transferred fromPterellaRobineau‐Desvoidy. The genusPterellais shown to be paraphyletic in its current circumscription, and to restore generic monophylyPterellais restricted to contain onlyPt. grisea(Meigen).ErioproctaEnderlein,stat.rev., is resurrected. The genusSenotainiaMacquart is reconstructed as paraphyletic. The monotypic genusMetopodiaBrauer & Bergenstamm is synonymised withTaxigrammaMacquart,syn.n.In light of our phylogenetic hypotheses, a new Miltogramminae tribal classification is proposed, composed of six tribes.more » « less
An official website of the United States government
